这两款工具的使用方法截然不同。使 用 Excel 时,可以通过鼠标点击完成大部分工作,你可以访问界面内不同位置的各种工具。因此 Excel 非常便于使用(熟能生巧),但是用 Excel 处理数据非常费时,而且如果接手一个新项目,你必须单调地重复这些流程。使用 R 时,则通过代码完成所有操作。你把数据载入内存,然后运行脚本来研究并处理数据。这个工具可能不够人性化,但是有以下几点好处。
作者认为,从概念上来说,R 更便于使用。如果你在处理多列数 据,虽然你只是在处理单个任务,但是却会看到所有的数据。而使用 R 时,数据都在内存中,只有调出数据才能看到。如果你在转换或计算,你会处理相关列或行的子集,其他所有数据都在后台。 作者觉得这样更便于关注手头的任务。完成任务后,可将其保存在某个数据帧中,其中只包含所需的列或行数据。你建立了正确的数据集,可解决当前的问题。这样 做看似无关紧要,但实际上大受裨益。
借助 R,就可以对其他数据集轻松重复相同的操作。因为所有数据都是通过代码进行处理和研究,因此对新的数据集执行相同的操作也就轻而易举了。使用 Excel 时,大多数操作都是通过鼠标点击实现,虽然用户体验不错,但对新的数据重复操作却非常费时而枯燥。而 R 只需载入新的数据集,然后再次运行脚本即可。
实际上,用代码操作也便于诊断并共享你的分析结果。使用 Excel 时,大多数的分析结果都基于内存(数据透视表在这里,公式编辑器在另一个表格上等)。而在 R 中,通过代码执行所有操作,一目了然。如果你在修正一个错误,你很清楚在哪里操作,而如果你需要共享分析结果,只需复制粘贴代码即可。在线查找帮助时,你 能准确说明所用数据,并提出具体的问题。事实上,大多数时候,你在线提问时,人们都是直接贴出准确的代码,来解决你的问题。
R 中的项目组织更简单。在 Excel 中, 作者要准备一系列表格,可能还要准备多个工作簿,然后适当命名,而且各文件名不得重复。项目备注分别保存在各个文件中。 R 项目组织单独设有一个文件夹,处理过的所有内容都放在其中。清理数据、探索性图表及模型。这样便于理解和查找,也为与一起工作的其他人提供方便。当 然,Excel 也能做到井井有条。 作者觉得 R 的简洁性更便于使用。
上述几点只能说是锦上添花,而并不是必不可少。在现在,讲讲 R 和 Excel 真正的区别。除了以上那些花哨的小优势之外,R 更适合用于数据分析。原因如下。